Search results

Search for "ZnO nanoparticles" in Full Text gives 57 result(s) in Beilstein Journal of Nanotechnology.

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • -tolerant species. Keywords: phytotoxicity; Raphanus sativus; ZnO nanoparticles; Zn tolerance; Zn toxicity; Introduction Despite zinc (Zn) being recognized as an important micronutrient for all living organisms, exceeding the permissible levels of Zn concentration due to anthropogenic sources can be
PDF
Album
Full Research Paper
Published 23 Jan 2024

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • , respectively, 2.4 times and 1.6 times greater than those of pure P(VDF-TrFE) nanogenerators [14]. Subash et al. added ZnO nanoparticles and exfoliated graphene oxide to P(VDF-TrFE) to prepare a composite nanofilm with excellent touch sensitivity and high output energy. They also used the piezoelectric film for
  • bottle was sealed and placed in a shaking mixer and shaken for 3 h. Next, ZnO nanoparticles (Shanghai Keyan Industrial Co., Ltd., particle size 3 ± 5 nm, content ≥99.8%) and GR filler (Shenzhen Turing Evolution Technology Co., Ltd., carbon content 98%, average diameter/thickness ratio = 9500) were added
PDF
Album
Full Research Paper
Published 31 Jul 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • studies [20][21][22]. Besides, Nhu et al. [23] used rosin as a green chemical approach to fabricate ZnO nanoparticles, exhibiting a high photocatalytic activity for both methylene blue (100%) and methyl orange (82.78%) decomposition after 210 min under UV radiation. Moreover, the advantages in the
PDF
Album
Editorial
Published 13 Jun 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • more uniform distribution of nanoparticles. The mechanism of batch preparation of functional nanofibers containing ZnO nanoparticles by the device was studied through experiments and theoretical analysis. The experimental data are in good agreement with the theoretical analysis results, which showed
  • that under the appropriate voltage (50 kV) and air flow (50 m3/h), the device could keep ZnO nanoparticles contained in the spinning solution evenly dispersed during the spinning process, thus obtaining functional nanofibers with more uniform distribution of ZnO nanoparticles, whose quality and yield
  • easily sink down, resulting in an uneven distribution of nanoparticles in the obtained fibers [17]. Due to their stable physical and chemical properties, good biocompatibility, excellent photoelectric properties, non-toxicity, strong antibacterial activity and low price, ZnO nanoparticles can be used in
PDF
Album
Full Research Paper
Published 23 Jan 2023

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • blue; methyl orange; rosin; ZnO nanoparticles; Introduction Currently, industrial development has generated a large number of pollutants which are released into the environment. The textile industry is one of the sources of organic pollution which is harmful to the environment and humans. Various
  • ]. These photogenerated electrons and holes migrate to the surface of ZnO to react with H2O and O2 to generate O2•− and •OH radicals, which oxidize organic substances. In addition, ZnO nanoparticles (NPs) have high antibacterial activity against bacteria, high biocompatibility, and are nontoxic to human
  • alternative route is a promising method for synthesizing nanomaterials due to its rapid, low-cost protocol, and safety to the environment [18]. Numerous studies applied green methods for the synthesis of ZnO nanoparticles from plants, fruits, plant extracts, and seaweeds [19][20][21][22]. Rafaie et al. [23
PDF
Album
Full Research Paper
Published 07 Oct 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • , ZnO-based nanomaterials have been extensively used in the industry and investigated in various application fields such as optoelectronics, biomedicine, agriculture, food, and cosmetics [1][2][3]. The wide range of applications is due to the many promising features of ZnO nanoparticles (NPs), such as
  • methods used for obtaining ZnO nanoparticles, solution synthesis methods such as sol–gel [22], chemical precipitation [23], polyol [24], and solvothermal [25] methods, are inexpensive, consume little energy, allow for a facile control of physical characteristics and morphology of the nanoparticles, offer
  • controllable morphology [28]. Various morphologies including nanoworms, nanowires, and nanorods with excellent crystallinity were also obtained using the solvothermal method [25]. According to Chieng et al., the particle sizes of the synthesized ZnO nanoparticles are in correlation with the glycol chain length
PDF
Album
Review
Published 27 May 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • highlight the innovative applications of ZnO due to its dielectric features (Figure 12) in the form of thin films, but also as thin layers of ZnO nanoparticles synthesized in the gaseous phase as gate dielectrics. Our results show a similar value when compared, for example, with the properties obtained for
PDF
Album
Full Research Paper
Published 19 Apr 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • published in 2018 by Sato et al., who used the ionoluminescense generated by the He ion beam to detect ZnO nanoparticles which were incubated with COS7 cells [25]. Today HIM-SIMS is possible via two different approaches. The first, a sector-field mass-spectrometer SIMS, was developed by Dowsett, Wirtz, et
  • by Sato et al., HIM imaging was used to study COS7 kidney fibroblast cells [25]. In one of the experiments described in the paper, the cells were incubated with ZnO nanoparticles whose fluorescense was detected by IL-HIM. In general, it can be concluded that IL-HIM is particularly promising for
PDF
Album
Review
Published 04 Jan 2021

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • used instead of NIR lasers to trigger the photothermal effect. For example, thiolated cobalt-doped ZnO nanoparticles were synthesized to photo-inhibit the efflux pump in multidrug-resistant bacteria [105]. The antibacterial activity of this nanosystem against methicillin-resistant S. aureus was found
PDF
Album
Review
Published 31 Jul 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • treatment at lower temperatures is not enough for producing single phase films, ZnO nanoparticles being embedded into the ZnMgO matrix, as deduced from photoluminescence spectra and XRD analysis. Nevertheless, such films could also find specific applications, for instance in quantum dot light emitting
  • 3.202 eV are related most likely to free-to-bound transitions due to some impurities in the ZnO crystallites. Therefore, the annealing temperature of 400 °C is not enough for the production of single phase ZnMgO films by sol–gel spin coating. On the other hand, ZnMgO:ZnO composite films with ZnO
  • nanoparticles embedded into the ZnMgO matrix are useful for fast electron transport and high charge balance in quantum dot light emitting diodes [22]. The multiphase composition of films prepared by spin coating and annealed at temperatures lower that 450 °C was revealed by X-ray diffraction (XRD) analysis. As
PDF
Album
Full Research Paper
Published 12 Jun 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • temperatures varied from 80 to 180 °C. A simple chemical solution strategy was used to form Cu(OH)2 and Zn(OH)2, and then CuO and ZnO nanoparticles were successfully obtained by the heat treatment process. During heat treatment of the electrospun Cu(Ac)2/Zn(Ac)2/PVDF/PAN nanofiber membranes, Cu(Ac)2 and Zn(Ac
  • that there are no new crystalline phases in the CNFMs, and that Cu(Ac)2, Zn(Ac)2, PVDF and PAN retain their crystalline structure. Characterization of PVDF/PAN CNFMs with CuO and ZnO nanoparticles The electrospun PVDF/PAN/Cu(Ac)2/Zn(Ac)2 CNFMs with the optimum weight ratios (Cu(Ac)2/Zn(Ac)2 = 1:1, PVDF
  • /PAN = 5:5 and [Cu(Ac)2/Zn(Ac)2]/[PVDF/PAN] = 1:2) were calcined and PVDF/PAN CNFMs with CuO and ZnO nanoparticles were obtained. The effects of heat-treatment temperature and time on morphology, structure and properties of the CNFMs were characterized. Effect of the heat-treatment temperature on the
PDF
Album
Full Research Paper
Published 15 Apr 2020

Nanoarchitectonics: bottom-up creation of functional materials and systems

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2020, 11, 450–452, doi:10.3762/bjnano.11.36

Graphical Abstract
  • TiO2 and ZnO nanoparticles exhibit distinct and useful properties [35]. Other examples include a self-assembled MoS2-based composite that was developed for energy conversion and storage purposes [36], a silver-nanoparticle/cellulose-nanofiber composite that was applied for surface-enhanced Raman
PDF
Album
Editorial
Published 12 Mar 2020

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • , M. Kandpal et al. [42] have shown that embedding ZnO nanoparticles into a pure SU8 matrix increases its Young’s modulus from 8 to 30 GPa. The stiffer cantilever chip body will probably yield better mechanical tuning properties and hence an improved ease of use. Conclusion In this article, a batch
PDF
Album
Full Research Paper
Published 29 Nov 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • intensity ratio corresponding to the molar ratio of ZnO and SiC. Any additional vibrational modes do not arise in the FTIR spectra of ZnO/SiC nanocomposites. To reveal the possible interactions between SiC and ZnO nanoparticles, and to shed light on the surface composition of the materials, we used X-ray
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • ][132]. The incorporation of various types of NPs using neat clay and applying a two-step synthesis has been reported. A recent example of this refers to the incorporation of ZnO nanoparticles to a Fe3O4-sepiolite nanoarchitecture previously prepared by in situ formation of superparamagnetic iron-oxide
PDF
Album
Review
Published 31 May 2019

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • sensors based on rGO/metal oxides, which exhibit enhanced sensing performance mainly due to the formation of heterojunctions. Tai et al. [46] deposited ZnO nanoparticles and GO thin films on gold interdigital electrodes (IDEs) through a simple spray process and thermally reduced the deposits to ZnO–rGO
  • were obtained through freeze-drying to keep the 3D structure. ZnO nanoparticles were well wrapped in graphene sheets, while the graphene sheets were well dispersed in the hybrids. The ZnO–rGO sensor exhibited 8% response to 50 ppm NO2 with rather rapid response/recovery times (132 s/164 s) while the
PDF
Album
Review
Published 09 Nov 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • substrates beaded with ZnO nanoparticles [25]. This effect was demonstrated at 0.780 µm with femtosecond pulses. Ahmad et al. employed ZnO nanoparticles in a polymer thin film as a SA for an Er fiber laser. The absorption saturation experiment performed at 1.560 µm revealed a saturation intensity as low as
PDF
Album
Full Research Paper
Published 23 Oct 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • they could provide strong binding sites to sulfur while simultaneously improving the conductivity of the electrode. We previously reported the synthesis of ZnO nanoparticles on NCNT as anode material for Li-ion batteries [13], and focused on the effect of NCNT on ZnO nanoparticles. A high concentration
  • patterns can be assigned to hexagonal wurtzite (JCPDS no. 36-1451). For the patterns of ZnO@NCNT and S/ZnO@NCNT, the peaks at about 31.1°, 34.4°, 36.3°, 47.5°, 56.6°, 62.8° and 68° correspond to ZnO [17], and the broad peaks at around 23.8° are associated with NCNT [18]. The size of the ZnO nanoparticles
  • the following experiments. Figure 3 illustrates the morphology and element distribution for the as-obtained ZnO@NCNT composite before S loading. ZnO@NCNT exhibits a bamboo-like shape, ZnO nanoparticles are uniformly coated on the NCNT walls, and most of the nanoparticles have a diameter of less than
PDF
Album
Full Research Paper
Published 06 Jun 2018

Room-temperature single-photon emitters in titanium dioxide optical defects

  • Kelvin Chung,
  • Yu H. Leung,
  • Chap H. To,
  • Aleksandra B. Djurišić and
  • Snjezana Tomljenovic-Hanic

Beilstein J. Nanotechnol. 2018, 9, 1085–1094, doi:10.3762/bjnano.9.100

Graphical Abstract
  • of a sample is obtained by large spot size excitations, e.g., Amekura et al. investigated the PL from ZnO nanoparticles with a spot size of approximately 4 mm [55][56]. This spot size constitutes an ensemble measurement where PL from many defects is sampled. Therefore, single defects and their
  • mechanism. This topic is beyond the scope of the current work, which focusses on the optical regime and single-photon emission. Morfa et al. [7] observed a dependence of the creation of defects in ZnO nanoparticles on the annealing temperature. Single-photon emission in TiO2 thin films The a-450 °C-TiO2
PDF
Album
Full Research Paper
Published 04 Apr 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • energy. Coupling the elemental distribution displayed by the energy-dispersive spectroscopy (EDS) mapping (Figure 2d–h) and EDS (Figure 2i), it is clear to see that in this 3D nanoflower structure of B-4 sample the ZnO nanoparticles are uniformly embedded on the architecture built up by erect BiOI layers
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • nanoparticles by a thermal treatment at 400 °C for 15 min. The ZnO/ZCIS composite was characterized by TEM, SEM, XRD, XPS and UV–vis absorption spectroscopy. ZCIS QDs, with an average diameter of ≈4.5 nm, were found to be homogeneously distributed at the surface of ZnO nanoparticles. ZCIS-sensitized ZnO
  • generating UV-A and UV-B radiation. In this paper, we report first the successful preparation of a ZnO/ZCIS heterostructured photocatalyst using commercial ZnO nanoparticles and only 2.5 wt % of ZCIS QDs. The high photocatalytic activity of this material for the degradation of Orange II dye under simulated
  • dispersed in 10 mL CHCl3. 100 mg of commercial ZnO nanoparticles, preliminary calcined at 450 °C for 3 h, were then added and the mixture which was magnetically stirred at room temperature until complete evaporation of CHCl3. The powder obtained was then heated at 400 °C for 15 min to build the
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

  • Saif Saadaoui,
  • Mohamed Aziz Ben Youssef,
  • Moufida Ben Karoui,
  • Rached Gharbi,
  • Emanuele Smecca,
  • Vincenzina Strano,
  • Salvo Mirabella,
  • Alessandra Alberti and
  • Rosaria A. Puglisi

Beilstein J. Nanotechnol. 2017, 8, 287–295, doi:10.3762/bjnano.8.31

Graphical Abstract
  • images show the formation of a thin layer between the NRs. This layering effect may be due to a reaction between the ZnO nanoparticles and the solvent in the dye solution. From these images, we notice that the number of individual hexagonal NRs is reduced and their shapes are no longer visible. This
  • explained by the fact that when increasing the annealing temperature, the stability of the ZnO nanoparticles was considerably affected, which resulted in higher reaction with the dye solution. However, the DSSC assembled without an annealed photoanode side gave a slightly higher short circuit current and
PDF
Album
Full Research Paper
Published 30 Jan 2017

Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles

  • Anurag Roy,
  • Partha Pratim Das,
  • Mukta Tathavadekar,
  • Sumita Das and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2017, 8, 210–221, doi:10.3762/bjnano.8.23

Graphical Abstract
  • , nanoparticles lead to higher surface area than 1D nanorods which can sensitize more CdS at a particular time. In this study, we have used synthesized ZnO-based photoanodes exhibiting two different morphologies: ZnO nanoparticles (ZnO-P) and nanorods (ZnO-R) for fabricating QDSSCs. We evaluated their respective
  • . ZnO nanoparticles and nanorods were synthesized by a solution-growth process, the details of which are reported elsewhere [31][32]. Fabrication of CdS-NP-sensitized ZnO-based films ZnO nanoparticle (ZnO-P) and nanorod (ZnO-R) films were fabricated by the doctor blade method on FTO glass (7 Ω/cm2) and
  • of the synthesized colloidal CdS NPs. The photovoltaic performance has been monitored for the QDSSCs using ZnO nanoparticles, ZnO nanorods and a ZnO nanoparticle/nanorod mixture as photoanode materials and the synthesized CdS NPs as sensitizer. A maximum efficiency of 1.06% has been achieved in case
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017
Other Beilstein-Institut Open Science Activities